metal-organic compounds

OH-

Ġн,

Z = 4

 $V = 519.71 (10) \text{ Å}^3$

Mo $K\alpha$ radiation $\mu = 2.49 \text{ mm}^{-1}$

 $0.21 \times 0.21 \times 0.11 \text{ mm}$

T = 296 (2) K

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

The monoclinic polymorph of catenapoly[[diaguamanganese(II)]-*µ*-oxalato- $\kappa^4 O^1, O^2: O^{1'}, O^{2'}$

Janet Soleimannejad,^a Hossein Aghabozorg,^{b*} Shabnam Hooshmand,^a Mohammad Ghadermazi^c and Jafar Attar Gharamaleki^b

^aDepartment of Chemistry, Ilam University, Ilam, Iran, ^bDepartment of Chemistry, Teacher Training University, 49 Mofateh Avenue, 15614 Tehran, Iran, and ^cDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran Correspondence e-mail: haghabozorg@yahoo.com

Received 30 May 2007; accepted 15 August 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.016; wR factor = 0.046; data-to-parameter ratio = 14.1.

The title polymer, $[Mn(C_2O_4)(H_2O_2)]_n$, was synthesized by the reaction of manganese(II) nitrate tetrahydrate with a protontransfer compound, $(pipzH_2)(ox)$ (where oxH_2 is oxalic acid and pipz is piperazine), in aqueous solution. The structure features a six-coordinate Mn²⁺ ion located on a twofold rotation axis, with a distorted octahedral geometry [Mn-O =2.1728(8)–2.1914(9)Å]. The bond angles show that the two coordinated water molecules are arranged trans. One-dimensional linear chains are formed through bis-bidentate oxalate ligands bridging the Mn^{II} ions. These structural units are held together by O-H···O hydrogen bonds. A neutron diffraction study of $[Mn(\mu-ox)(D_2O)_2]_n$, using powdered samples, has been published recently in the same space group [Sledzinska, Murasik & Fischer (1987). J. Phys. Solid State Phys. 20, 2247-2259]. However, it should be noted that an orthorhombic polymorph for the title polymer is also known [Huizing, van Hal, Kwestroo, Langereis & van Loosdregt (1977). Mater. Res. Bull. 12, 605-611; Lethbridge, Congreve, Esslemont, Slawin & Lightfoot (2003). J. Solid State Chem. 172, 212-218]. The present single-crystal X-ray study deals with the monoclinic polymorph. This phase is isostructural with the Co^{II} analogue.

Related literature

A preliminary report on the monoclinic polymorph of the title polymer was published by Deyrieux et al. (1973). For a neutron study of $[Mn(\mu-ox)(D_2O)_2]_n$, see Sledzinska et al. (1987). The reported structure is isostructural with that based on Co^{II} (Bacsa et al., 2005). For further details of the related chemistry, see: Chiozzone et al. (2003); Aghabozorg et al. (2006); Verdaguer (2001); Marinescu et al. (2002); Castillo et al. (2001); Fu et al. (2005); Wu et al. (2005).

Experimental

Crystal data

 $[Mn(C_2O_4)(H_2O_2)]$ $M_r = 178.99$ Monoclinic, C2/ca = 11.7648 (14) Åb = 5.6550 (6) Å c = 9.6367 (11) Å $\beta = 125.843 \ (6)^{\circ}$

Data collection

Bruker SMART CCD area-detector	4187 measured reflections
diffractometer	607 independent reflections
Absorption correction: multi-scan	604 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 1998)	$R_{\rm int} = 0.025$
$T_{\min} = 0.616, \ T_{\max} = 0.763$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.016$	43 parameters
$wR(F^2) = 0.046$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$
607 reflections	$\Delta \rho_{\rm min} = -0.40 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Mn1–O2 ⁱ Mn1–O1	2.1728 (8) 2.1849 (9)	Mn1-O3	2.1914 (9)
$\begin{array}{l} O2^{ii} - Mn1 - O2^{ii} \\ O2^{ii} - Mn1 - O1 \\ O2^{i} - Mn1 - O1 \\ O1 - Mn1 - O1^{iii} \\ O2^{ii} - Mn1 - O3 \end{array}$	76.70 (4) 179.57 (3) 103.35 (3) 76.61 (4) 89.07 (3)	O2 ⁱ -Mn1-O3 O1-Mn1-O3 O1 ⁱⁱⁱ -Mn1-O3 O3-Mn1-O3 ⁱⁱⁱ	90.19 (3) 90.50 (3) 90.24 (3) 179.05 (4)

Symmetry codes: (i) x, y - 1, z; (ii) $-x + 1, y - 1, -z + \frac{3}{2}$; (iii) $-x + 1, y, -z + \frac{3}{2}$; (iv) x, y + 1, z

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3A\cdots O1^{v}$	0.95	1.85	2.7696 (12)	162
$O3-H3B\cdots O2^{vi}$	0.95	1.86	2.7517 (12)	155
	1 . 2	1 (1)		

Symmetry codes: (v) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (vi) -x + 1, -y + 2, -z + 2.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL.

Financial support from Ilam University and the Teacher Training University is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2112).

References

- Aghabozorg, H., Ghadermazi, M. & Sheshmani, S. (2006). Acta Cryst. E62, o3287-o3289.
- Bacsa, J., Eve, D. & Dunbar, K. R. (2005). Acta Cryst. C61, m58-m60.
- Bruker (1998). SADABS (Version 2004/1), SAINT (Version 6.01) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2005). SHELXTL. Version 6.10. Bruker AXS Inc., Madison,
- Wisconsin, USA.
- Castillo, O., Luque, A., Lloret, F. & Román, P. (2001). *Inorg. Chem. Commun.* 4, 350–353.

- Chiozzone, R., Gonzalez, R., Kremer, C., De Munno, G., Armentano, D., Lloret, F., Julve, M. & Faus, J. (2003). *Inorg. Chem.* **42**, 1064–1069.
- Deyrieux, R., Berro, C. & Peneloux, A. (1973). Bull. Soc. Chim. Fr. 1, 25–34. Fu, X., Wang, C. & Li, M. (2005). Acta Cryst. E61, m1348–m1349.
- Huizing, A., van Hal, H. A. M., Kwestroo, W., Langereis, C. & van Loosdregt, P. C. (1977). *Mater. Res. Bull.* **12**, 605–611.
- Lethbridge, Z. A. D., Congreve, A. F., Esslemont, E., Slawin, A. M. Z. & Lightfoot, P. (2003). J. Solid State Chem. 172, 212–218.
- Marinescu, G., Lescouëzec, R., Armentano, D., De Munno, G., Andruh, M., Uriel, S., Llusar, R., Lloret, F. & Julve, M. (2002). *Inorg. Chim. Acta*, 336, 46–54.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sledzinska, I., Murasik, A. & Fischer, P. (1987). J. Phys. Solid State Phys. 20, 2247–2259.
- Verdaguer, M. (2001). Polyhedron, 20, 1115-1128.
- Wu, W.-Y., Song, Y., Li, Y.-Z. & You, X.-Z. (2005). Inorg. Chem. Commun. 8, 732–736.

supplementary materials

Acta Cryst. (2007). E63, m2389-m2390 [doi:10.1107/S1600536807040470]

The monoclinic polymorph of *catena*-poly[[diaquamanganese(II)]- μ -oxalato- $\kappa^4 O^1, O^2: O^{1'}, O^{2'}$]

J. Soleimannejad, H. Aghabozorg, S. Hooshmand, M. Ghadermazi and J. Attar Gharamaleki

Comment

Oxalato-bridged coordination compounds have played a key role in the theoretical and experimental development of areas such as molecular magnetism (Verdaguer, 2001) and crystal engineering (Marinescu *et al.*, 2002). It has been established that two crystal hydrates are formed in this system MnC_2O_4 :2H₂O and MnC_2O_4 :3H₂O. Both crystal hydrates differ in color and structure. The white α -MnC₂O₄:2H₂O is monoclinic, space group *C*2/*c* (Deyrieux *et al.*, 1973), while the pink-colored MnC_2O_4 :3H₂O is orthorhombic, space group *Pcca* (Huizing *et al.*, 1977, Fu *et al.*, 2005; Wu *et al.*, 2005). However, the paper published by Deyrieux *et al.* does not include atomic coordinates. A neutron diffraction study for MnC_2O_4 :two-dimensional₂O, using powdered samples, has been published recently (Sledzinska *et al.*, 1987). It is noticeable that an orthorhombic polymorphs for the title polymer is also known (Huizing *et al.*, 1977; Lethbridge *et al.*, 2003;). In this way, our X-ray study deals with the monoclinic polymorph. It is expected that the difference in the crystal lattice of the compounds and the different way of bonding of water molecules would affect some properties, such as a thermal stability, oxidation, and magnetic behavior. The wide variety of coordination modes of the oxalate anion with different metals allows the use of metal-oxalato units as excellent building blocks to construct a great diversity of homo- and heterometallic structural frameworks ranging from discrete polymeric entities (Chiozzone *et al.*, 2003) to one-, two- and three-dimensional networks (Castillo *et al.* 2001).

Figure 1 shows that the O3 and O3d atoms of the two coordinated water molecules occupy the axial positions, while O1, O1d, O2a and O2c atoms of bridging oxalate ligands form the equatorial plane. The O3—Mn—O3d angle is almost linear, 179.05 (4)°. Therefore, coordination sphere around the Mn^{II} center, placed on a twofold symmetry axis, is almost octahedral. The torsion angles show that the oxalate ligand is planar. Also, the result shows that one-dimensional linear chains are formed in the crystal structure through bridging bis-bidentate oxalate ligands. The bond angles show that the two coordinated water molecules are arranged *trans*. A remarkable feature in the crystal structure of (I) is the presence of strong O—H…O hydrogen bonds, connecting one-dimensional chains in the crystal structure (Fig. 2). The title complex is isomorphous to the corresponding Co^{II}-based polymer (Bacsa *et al.*, 2005).

Experimental

A solution of $Mn(NO_3)_2$ ·4H₂O (125 mg, 0.5 mmol) in water (20 ml) was added to an aqueous solution of (pipzH₂)(ox) (253 mg, 1.0 mmol) in water (20 ml) in a 2:1 molar ratio (oxH₂ is oxalic acid and pipz is piperazine; see Aghabozorg *et al.*, 2006). Colorless crystals of (I) were obtained after a few days at room temperature.

Refinement

H atoms for the water molecule O3 were found in a difference map but their positions regularized with O—H bond lengths constrained to 0.95 Å. H atoms were constrained to ride on O3 and were refined with an isotropic displacement parameter fixed to $U_{iso}(H) = 1.2 U_{eq}(O3)$.

Figures

Fig. 1. Molecular structure of compound (I), displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Crystal packing of the title compound (I), hydrogen bonds are shown as dashed lines.

$catena \text{-} poly[[diaquamanganese(II)]-\mu\text{-} oxalato-\kappa^4O^1, O^2: O^1', O^{2'}]$

Crystal data	
$[Mn(C_2O_4)(H_2O_1)_2]$	$F_{000} = 356$
$M_r = 178.99$	$D_{\rm x} = 2.288 {\rm Mg m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 3637 reflections
<i>a</i> = 11.7648 (14) Å	$\theta = 3.4 - 27.5^{\circ}$
b = 5.6550 (6) Å	$\mu = 2.49 \text{ mm}^{-1}$
c = 9.6367 (11) Å	T = 296 (2) K
$\beta = 125.843 \ (6)^{\circ}$	Block, colourless
$V = 519.71 (10) \text{ Å}^3$	$0.21 \times 0.21 \times 0.11 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	607 independent reflections
Radiation source: fine-focus sealed tube	604 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
Detector resolution: 100 pixels mm ⁻¹	$\theta_{\text{max}} = 27.7^{\circ}$
T = 296(2) K	$\theta_{\min} = 4.2^{\circ}$
ω scans	$h = -15 \rightarrow 15$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$k = -7 \rightarrow 6$
$T_{\min} = 0.616, \ T_{\max} = 0.763$	$l = -12 \rightarrow 12$

4187 measured reflections

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.016$	$w = 1/[\sigma^2(F_o^2) + (0.0267P)^2 + 0.4357P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.046$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.10	$\Delta \rho_{max} = 0.46 \text{ e } \text{\AA}^{-3}$
607 reflections	$\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$
43 parameters	Extinction correction: SHELXL97 (Sheldrick, 1997), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0173 (15)

Secondary standard in the sting difference Experimental

Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Mn1	0.5000	0.56903 (4)	0.7500	0.00841 (13)
C1	0.55073 (12)	1.07019 (17)	0.85025 (14)	0.0084 (2)
01	0.58713 (8)	0.87221 (15)	0.92326 (10)	0.01030 (19)
O2	0.58807 (8)	1.26771 (14)	0.92238 (10)	0.00973 (19)
03	0.31804 (9)	0.56581 (13)	0.75879 (11)	0.0116 (2)
H3A	0.2346	0.6137	0.6532	0.014*
H3B	0.3304	0.6569	0.8495	0.014*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Mn1	0.01051 (17)	0.00518 (17)	0.00806 (17)	0.000	0.00461 (13)	0.000
C1	0.0080 (5)	0.0101 (6)	0.0070 (6)	0.0001 (3)	0.0044 (5)	0.0001 (3)
01	0.0124 (4)	0.0067 (4)	0.0085 (4)	0.0003 (3)	0.0043 (3)	0.0007 (3)
O2	0.0124 (4)	0.0065 (4)	0.0080 (4)	-0.0005 (3)	0.0047 (3)	-0.0006 (3)
03	0.0121 (4)	0.0121 (4)	0.0086 (4)	0.0005 (3)	0.0049 (4)	-0.0009(3)

Geometric parameters (Å, °)

Mn1—O2 ⁱ	2.1728 (8)	C1—02	1.2515 (13)
Mn1—O2 ⁱⁱ	2.1728 (8)	C1—01	1.2566 (13)
Mn1—O1	2.1849 (9)	C1—C1 ⁱⁱⁱ	1.567 (2)
Mn1—O1 ⁱⁱⁱ	2.1849 (9)	O2—Mn1 ^{iv}	2.1728 (8)
Mn1—O3	2.1914 (9)	ОЗ—НЗА	0.9501
Mn1—O3 ⁱⁱⁱ	2.1914 (9)	O3—H3B	0.9500
O2 ⁱ —Mn1—O2 ⁱⁱ	76.70 (4)	O1—Mn1—O3 ⁱⁱⁱ	90.24 (3)

supplementary materials

$O2^{i}$ —Mn1—O1	179.57 (3)	O1 ⁱⁱⁱ —Mn1—O3 ⁱⁱⁱ	90.50 (3)
O2 ⁱⁱ —Mn1—O1	103.35 (3)	O3—Mn1—O3 ⁱⁱⁱ	179.05 (4)
O2 ⁱ —Mn1—O1 ⁱⁱⁱ	103.35 (3)	O2-C1-O1	126.19 (11)
O2 ⁱⁱ —Mn1—O1 ⁱⁱⁱ	179.57 (3)	O2—C1—C1 ⁱⁱⁱ	116.80 (6)
O1—Mn1—O1 ⁱⁱⁱ	76.61 (4)	01—C1—C1 ⁱⁱⁱ	117.00 (6)
O2 ⁱ —Mn1—O3	89.07 (3)	C1—O1—Mn1	114.69 (7)
O2 ⁱⁱ —Mn1—O3	90.19 (3)	C1—O2—Mn1 ^{iv}	114.84 (7)
O1—Mn1—O3	90.50 (3)	Mn1—O3—H3A	112.1
O1 ⁱⁱⁱ —Mn1—O3	90.24 (3)	Mn1—O3—H3B	113.9
O2 ⁱ —Mn1—O3 ⁱⁱⁱ	90.19 (3)	НЗА—ОЗ—НЗВ	109.6
O2 ⁱⁱ —Mn1—O3 ⁱⁱⁱ	89.07 (3)		
O2—C1—O1—Mn1	-179.34 (9)	O3—Mn1—O1—C1	-90.31 (8)
C1 ⁱⁱⁱ —C1—O1—Mn1	0.46 (15)	O3 ⁱⁱⁱ —Mn1—O1—C1	90.28 (8)
O2 ⁱⁱ —Mn1—O1—C1	179.38 (7)	O1—C1—O2—Mn1 ^{iv}	-179.48 (9)
O1 ⁱⁱⁱ —Mn1—O1—C1	-0.18 (6)	C1 ⁱⁱⁱ —C1—O2—Mn1 ^{iv}	0.72 (15)
Symmetry codes: (i) $-x+1$, $y-1$, $-z+3/2$;	(ii) <i>x</i> , <i>y</i> –1, <i>z</i> ; (iii) – <i>x</i> +1, <i>y</i> ,	-z+3/2; (iv) x, y+1, z.	

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O3— $H3A$ ···O1 ^v	0.95	1.85	2.7696 (12)	162
O3—H3B···O2 ^{vi}	0.95	1.86	2.7517 (12)	155
Symmetry codes: (v) $x-1/2$, $-y+3/2$, $z-1/2$; (vi) $-x+1$, $-y+2$, $-z+2$.				

Fig. 1

Fig. 2